Unsupervised Clustering Methods for Identifying Rare Events in Anomaly Detection

نویسندگان

  • Witcha Chimphlee
  • Siriporn Chimphlee
  • Surat Srinoy
چکیده

It is important problems to increase the detection rates and reduce false positive rates in Intrusion Detection System (IDS). Although preventative techniques such as access control and authentication attempt to prevent intruders, these can fail, and as a second line of defence, intrusion detection has been introduced. Rare events are events that occur very infrequently, detection of rare events is a common problem in many domains. In this paper we propose an intrusion detection method that combines Rough set and Fuzzy Clustering. Rough set has to decrease the amount of data and get rid of redundancy. Fuzzy c-means clustering allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect suspicious activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining-(KDDCup 1999) Dataset show that the method is efficient and practical for intrusion detection systems. Keywords—Network and security, intrusion detection, fuzzy cmeans, rough set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub-Space Clustering, Inter-Clustering Results Association & Anomaly Correlation for Unsupervised Network Anomaly Detection

Network anomaly detection is a critical aspect of network management for instance for QoS, security, etc. The continuous arising of new anomalies and attacks create a continuous challenge to cope with events that put the network integrity at risk. Most network anomaly detection systems proposed so far employ a supervised strategy to accomplish the task, using either signature-based detection me...

متن کامل

An unsupervised heterogeneous log-based framework for anomaly detection

Log analysis is a method to identify intrusions at the host or network level by scrutinizing the log events recorded by the operating systems, applications, and devices. Most work contemplates a single type of log for analysis, leading to an unclear picture of the situation and difficulty in deciding the existence of an intrusion. Moreover, most existing detection methods are knowledge-dependen...

متن کامل

BotOnus: an online unsupervised method for Botnet detection

Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...

متن کامل

A Clustering-Based Unsupervised Approach to Anomaly Intrusion Detection

In the present paper a 2-means clustering-based anomaly detection technique is proposed. The presented method parses the set of training data, consisting of normal and anomaly data, and separates the data into two clusters. Each cluster is represented by its centroid one of the normal observations, and the other for the anomalies. The paper also provides appropriate methods for clustering, trai...

متن کامل

Clustering and Unsupervised Anomaly Detection with L2 Normalized Deep Auto-Encoder Representations

Clustering is essential to many tasks in pattern recognition and computer vision. With the advent of deep learning, there is an increasing interest in learning deep unsupervised representations for clustering analysis. Many works on this domain rely on variants of auto-encoders and use the encoder outputs as representations/features for clustering. In this paper, we show that an l2 normalizatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005